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I.   INTRODUCTION 

In recent decades, the applications of fractional calculus in various fields of science is growing rapidly, such as physics, 

biology, mechanics, electrical engineering, viscoelasticity, control theory, modelling, economics, etc [1-10]. However, the 

definition of fractional derivative is not unique. Common definitions include Riemann-Liouville (R-L) fractional derivative, 

Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional 

derivative [11-15]. Since Jumarie type of R-L fractional derivative helps to avoid non-zero fractional derivative of constant 

function, it is easier to use this definition to connect fractional calculus with classical calculus. 

In this paper, based on Jumarie’s modified R-L fractional calculus, we find the solution of the following improper 𝛼-

fractional integral: 

                                                                      ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] ,                                     (1) 

where 0 < 𝛼 ≤ 1, (−1)𝛼  exists, and 𝑡 ≥ 0. Differentiation under fractional integral sign and a new multiplication of 

fractional analytic functions play important roles in this paper. On the other hand, some examples are provided to illustrate 

our main result. In fact, our result is a generalization of traditional calculus result.  

II.   PRELIMINARIES 

At first, the fractional calculus used in this paper and its properties are introduced below. 

Definition 2.1 ([16]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                          ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                                (2) 

And the Jumarie type of R-L 𝛼-fractional integral is defined by 

                                                                             ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                        (3) 

where Γ( ) is the gamma function.  
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Proposition 2.2 ([17]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                            (4) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                        (5) 

In the following, we introduce the definition of fractional analytic function. 

Definition 2.3 ([18]): Assume that 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 

𝑓𝛼: [𝑎, 𝑏] → 𝑅 can be expressed as an 𝛼-fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open 

interval containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. In addition, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on 

closed interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional 

analytic function on [𝑎, 𝑏]. 

Next, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([19]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                            𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0 ,                                  (6) 

                                              𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                (7) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0   

                                                                   = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)𝑘𝛼 .                                           (8) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

 .                                                  (9) 

Definition 2.5 ([20]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) be two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0  ,                                (10) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                  (11) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 ,                                               (12) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 .                                                (13) 
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Definition 2.6 ([21]): If 0 < α ≤ 1, and 𝑥 is a real variable. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                               (14) 

In addition, the 𝛼-fractional cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑘𝑥2𝑘𝛼

Γ(2𝑘𝛼+1)
= ∑

(−1)𝑘

(2𝑘)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂2𝑘
∞
𝑘=0

∞
𝑘=0 ,                                        (15) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑘𝑥(2𝑘+1)𝛼

Γ((2𝑘+1)𝛼+1)
= ∑

(−1)𝑘

(2𝑘+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(2𝑘+1)
∞
𝑘=0

∞
𝑘=0  .                              (16) 

Definition 2.7: Assume that 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥𝛼))
⊗𝑛

=

𝑓𝛼(𝑥𝛼) ⊗ ⋯ ⊗ 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥𝛼). On the other hand, if 𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) = 1, then 𝑔𝛼(𝑥𝛼) is 

called the ⊗ reciprocal of 𝑓𝛼(𝑥𝛼), and is denoted by (𝑓𝛼(𝑥𝛼))
⊗−1

. 

Definition 2.8: The smallest positive real number 𝑇𝛼 such that 𝐸𝛼(𝑖𝑇𝛼) = 1, is called the period of 𝐸𝛼(𝑖𝑥𝛼). 

Theorem 2.9 (differentiation under fractional integral sign) ([22]): Assume that  0 < 𝛼 ≤ 1,  𝑡 is a real variable, and 

𝑓𝛼(𝑥𝛼)  is a 𝛼-fractional analytic function at 𝑥 = 0, then 

                                                                         
𝑑

𝑑𝑡
( 𝐼0 𝑥

𝛼)[𝑓𝛼(𝑡𝑥𝛼)] = ( 𝐼0 𝑥
𝛼) [

𝑑

𝑑𝑡
𝑓𝛼(𝑡𝑥𝛼)] .                                                         (17) 

Theorem 2.10 ([22]): Let  0 < 𝛼 ≤ 1, then the improper α-fractional integral 

                                                                  ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑥𝛼) ⊗ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

] =
𝜋

2
 .                                                    (18) 

III.   MAIN RESULT AND EXAMPLES 

In this section, we obtain some type of improper fractional integral. Moreover, some examples are given to illustrate our 

result. At first, we need a lemma. 

Lemma 3.1: Let  0 < 𝛼 ≤ 1, and 𝑡 ≥ 0, then the improper 𝛼-fractional integral 

                                                              ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

] =
𝜋

2
 .                                                       (19) 

Proof                      ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

] 

                              = ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ (𝑡 ∙

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

⨂ ( 𝐷0 𝑥
𝛼) [𝑡 ∙

1

Γ(𝛼+1)
𝑥𝛼]]  

                              = ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑥𝛼)⨂ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

]  

                              =
𝜋

2
 .                                                                                                                         Q.e.d. 

Theorem 3.2: If  0 < 𝛼 ≤ 1, (−1)𝛼 exists, and 𝑡 ≥ 0, then the improper 𝛼-fractional integral 

                                ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] = (
𝑇𝛼

4
−

𝜋

2
) 𝑒𝑡 + (

𝑇𝛼

4
+

𝜋

2
) 𝑒−𝑡.                      (20) 

Proof  Let 𝑝(𝑡) = ( 𝐼0 +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] , then by differentiation under fractional integral sign,  

           
𝑑

𝑑𝑡
𝑝(𝑡)       =  

𝑑

𝑑𝑡
[( 𝐼0 +∞

𝛼 ) [ 𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ (1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

]]  
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      = ( 𝐼0 +∞
𝛼 ) [

𝑑

𝑑𝑡
𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

]      

      = ( 𝐼0 +∞
𝛼 ) [−

1

Γ(𝛼+1)
𝑥𝛼⨂𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

]     

      = −( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

⨂𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ ((
1

Γ(𝛼+1)
𝑥𝛼) ⨂ [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])

⨂ −1

]      

      = −( 𝐼0 +∞
𝛼 ) [[(

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

+ 1 − 1] ⨂𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ ((
1

Γ(𝛼+1)
𝑥𝛼) ⨂ [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])

⨂ −1

]      

      = −( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

] + ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ ((

1

Γ(𝛼+1)
𝑥𝛼) ⨂ [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])

⨂ −1

]      

      = −
𝜋

2
+ ( 𝐼0 +∞

𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ ((
1

Γ(𝛼+1)
𝑥𝛼) ⨂ [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])

⨂ −1

] .   (by Lemma3.1)                        (21)  

Using differentiation under fractional integral sign again yields 

                           
𝑑2

𝑑𝑡2 𝑝(𝑡)  

                      =
𝑑

𝑑𝑡
(−

𝜋

2
+ ( 𝐼0 +∞

𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ ((
1

Γ(𝛼+1)
𝑥𝛼) ⨂ [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])

⨂ −1

])  

                      = ( 𝐼0 +∞
𝛼 ) [

𝑑

𝑑𝑡
(𝑠𝑖𝑛𝛼(𝑡𝑥𝛼)⨂ ((

1

Γ(𝛼+1)
𝑥𝛼) ⨂ [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])

⨂ −1

)]  

                      = ( 𝐼0 +∞
𝛼 ) [𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ ([1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])
⨂ −1

]  

                      = 𝑝(𝑡).                                                                                                                                                      (22) 

Therefore, 

                                                                                   𝑝(𝑡) = 𝐶1𝑒𝑡 + 𝐶2𝑒−𝑡 ,                                                                        (23) 

where  𝐶1, 𝐶2 are constants. Since 

                                                             𝑝(0)  

                                                        = ( 𝐼0 +∞
𝛼 ) [([1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

])
⨂ −1

]  

                                                        = 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼)|𝑥=0
𝑥=+∞ 

                                                        =
𝑇𝛼

4
 .                                                                                                                           (24) 

It follows that 

                                                                                               𝐶1 + 𝐶2 =
𝑇𝛼

4
 .                                                                           (25) 

Furthermore, 

                                                                                          
𝑑

𝑑𝑡
𝑝(𝑡)|

𝑡=0
= −

𝜋

2
 .                                                                        (26) 

Hence, 

                                                                                            𝐶1 − 𝐶2 = −
𝜋

2
 .                                                                           (27) 
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So, 

                                                                                            𝐶1 =
𝑇𝛼

8
−

𝜋

4
 ,                                                                               (28) 

                                                                                            𝐶2 =
𝑇𝛼

8
+

𝜋

4
 .                                                                               (29) 

Therefore,  

                                                                             𝑝(𝑡) = (
𝑇𝛼

8
−

𝜋

4
) 𝑒𝑡 + (

𝑇𝛼

8
+

𝜋

4
) 𝑒−𝑡.                                                         (30) 

Finally, we obtain 

                                                        ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(𝑡𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

]  

                                                    = 2𝑝(𝑡) 

                                                    = (
𝑇𝛼

4
−

𝜋

2
) 𝑒𝑡 + (

𝑇𝛼

4
+

𝜋

2
) 𝑒−𝑡.                                                                            Q.e.d. 

Example 3.3: Suppose that  0 < 𝛼 ≤ 1, and (−1)𝛼 exists, then 

                         ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] = (
𝑇𝛼

4
−

𝜋

2
) 𝑒 + (

𝑇𝛼

4
+

𝜋

2
) 𝑒−1 ,                             (31) 

                         ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(3𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] = (
𝑇𝛼

4
−

𝜋

2
) 𝑒3 + (

𝑇𝛼

4
+

𝜋

2
) 𝑒−3 ,                         (32) 

                         ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼(√2𝑥𝛼)⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] = (
𝑇𝛼

4
−

𝜋

2
) 𝑒√2 + (

𝑇𝛼

4
+

𝜋

2
) 𝑒−√2 ,                  (33) 

                         ( 𝐼−∞ +∞
𝛼 ) [ 𝑐𝑜𝑠𝛼 (

√3

4
𝑥𝛼) ⨂ (1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂2

)
⨂ −1

] = (
𝑇𝛼

4
−

𝜋

2
) 𝑒

√3

4 + (
𝑇𝛼

4
+

𝜋

2
) 𝑒−

√3

4  .                   (34) 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional calculus, we find the exact solution of some type of improper 

fractional integral. Differentiation under fractional integral sign and a new multiplication of fractional analytic functions 

play important roles in this article. On the other hand, we provide some examples to illustrate our main result. In fact, the 

major result we obtained is a natural generalization of the result in classical calculus. In the future, we will continue to use 

our methods to study the problems in engineering mathematics and fractional differential equations. 
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